
On industrial needs of symmetric cryptography

Santosh Kumar Yadav, Neelima Relan* and Jaspal Singh Bhatia*
Department of Mathematical Sciences, Kalindi College, University of Delhi, INDIA

*J.J.T. University, Jhunjhunu (RJ) INDIA

(Received 10 Jan., 2010, Accepted 27 Feb., 2010)

ABSTRACT : Cryptography is a science as well as a technique which has its goal as applicability. The conversion
of scientific results on cryptography into actual products is performed mostly by private companies and public
sector organisations who wish to incorporate security features within various applications. These organisations
are collectively described as “the industry” and the purpose of this paper is to provide a rough sketch of what are
their current needs in the area of symmetric cryptography.

Keywords : Secure protocols, AES, SHS, Stream Cipher, Random Seeds

 
International Journal of Theoretical & Applied Sciences, 2(1): 41-44(2010) ISSN : 0975-1718

INTRODUCTION
Scientific research on Cryptography operates on abstract,

mathematical objects such as integers or elements is a finite
field. Industrial applications are more concerned about
sending and receiving streams of bits or bytes. For proper
interoperability, an algorithm must be specified completely
and unambiguously, which means that two distinct and
independent implementers should be able to produce the
exact same output with the same input without resourting
to “common knowledge”. This paper will show the problems
which the industry would like the researchers, to tackle most
immediately.

Industrial needs in symmetric cryptography can be
sorted into the follows categories :

(i) Standards;
(ii) Secure protocols;

(iii) High-performance specialised algorithms;
(iv) Random number generators’
(v) Implementation issues

STANDARDIZATION
A variety of standardization challenges are presented

as follows :

A. Data representation
For symmetric cryptography, what algorithm (scientific)

descriptions most often lack is a precise definition of the
ordering of bits within a byte, and the ordering of bytes
within a multi-byte integer value. Some standards, such as
the AES [4] and SHS [3] do it correctly : they take great
pain to define bit and byte ordering precisely.

Without such a precise definition, any algorithm
specification is next to useless for the industry; if the
algorithm is really needed (for instance, it has very good
properties which no properly specified existing algorithm
provides), the industrial organisation will fill in the blanks
with its own proprietary definitions, and thus is
interoperability forfeit.
B. Responsibilities

Apart from being clear and precise, a good standard
must be accepted and maintained. For instance, the FIPS

publications by the NIST [11] (such as AES and SHS) fit
this description well. They are backed by the US government
and as such their use is mandated throughout many
government applications; conformance to these standards
can be qualified as a legal obligation. Moreover, the NIST
is officially responsible for the contents of the standards,
and must publish revisions when the needs arises. Using
these standards is economically justified. The RFC [8] system
is not as good. RFC publication is relatively easy (and free),
but most RFCs are tagged as “informational” which gives
no hint on their acceptance and foreseeable future. Only
those RFCs which are related to Internet protocols get a
chance to become RFC “standards”. RFCs are never
modified in any way; revisions may be issued but there is
no guarantee of that. A good example of this is the TLS
protocol [15] and the RC4 stream cipher : RC4 is, technically,
a trademark corresponding to a secret algorithm. However,
there exists another algorithm (usually called “alleged RC4”
or “Arcfour”) which is not secret and which appears to be
compatible with the official RC4. The “alleged” situation is
not satisfactory, hence a new RFC describing Arcfour was
scheduled, and the TLS RFC specifies that Arcfour, as
described in that new document, is compatible with the
official RC4. This was stated when the TLS RFC was written,
back in January 1999. However the Arcfour description was
never published and since nobody is responsible for this
document, it cannot be said when, if ever, Arcfour will be
described in a public authoritative reference.
C. Secure protocols

Cryptographic algorithms are only bricks which are
combined into protocols which provide some high-level
security features. An example of such a protocol is TLS
[15], which combines symmetric encryption, MACs and
asymmetric cryptography (key exchange and signature) in
order to provide a confidential authenticated integrity-
checked two-way tunnel for arbitrary byte streams: the
underlying medium is any other two-way tunnel for byte
streams. The performance and adequacy of a protocol in a
specific situation is highly dependent on the protocol
definition. The regular “standard” protocols are usually high-
level and best suited to Internet-like communications. For



42 Yadav, Relan and Bhatia

small lightweight applications (e.g. embedded mobile
devices), implementers are reluctant to implement TLS or
IPsec tunnelling because they cannot afford a fully
functional IP implementation. For these devices special
lightweight protocols must be designed which have
provisions for the characteristics of the environment.

D. Encryption Modes
A raw symmetric encryption algorithm is either a block

cipher or a stream cipher.
A block cipher encrypts only one block; to encrypt

more, the incoming data must be split into several blocks
and a special mode of encryption used. The most naive
mode, the ECB mode, is known to be weak. The usual
recommendation is to use CBC [6] mode, but this has the
following problems :

(i) CBC needs an initial value which should be added
to the encrypted message, thus enlarging it.

(ii) CBC encrypts data only if it has a length which is a
multiple of the block size. If the underlying data does
not have this property then some padding must be
applied, which usually results in further message
length increase. Some specific padding modes have
been devised to avoid this problem (e.g. “ciphertext
stealing”, aka CTS) but their security still needs some
serious analysis.

(iii) CBC can be interleaved by splitting the input into
separate streams in order to improve throughput
(e.g., on Triple DES platforms that have three DES
processors). But, in general, CBC cannot be made
parallel. This is a problem for high-bandwidth
devices.

Stream ciphers do not have padding issues, but they
have security issues when a key is reused. The usual
approach is to include an IV and combine it somehow with
the key, but the actual combining process is rarely described
and can have adverse effects if not done properly. Moreover,
if the IV cannot be derived from some contextual information
(e.g., message sequence number), it must be sent along with
the message, which increases its length. Note that a block
cipher in CTR mode is only a way to make a stream cipher
from a block cipher; the IV in this case is the counter initial
value.

The industry needs modes of encryption which provide
some or all of the following characteristics :

(i) little or no increase in message size;
(ii) precise and complete specification of proper ways

to derive IVs and other values;
(iii) possibility of parallel implementation (for high-speed

devices with specific hardware);
(iv) Low cost;
(v) possibility of encryption of very short message;

(vi) if possible, patent-free.

E. Combined encryption and MAC algorithm
MACs are used to provide integrity checks on data.

Assurance of integrity is needed in most protocols, in order

to thwart active attacks (e.g., modifying data). Although such
attacks are usually much more difficult to perform than simple
eavesdropping, they are nonetheless increasingly important
for the industry. Integrity checks can be used to provide
authentication (by knowledge of a shared secret),
independently of any need for confidentiality; however, it is
often the case that both confidentiality and data integrity
are needed. Some historical applications (e.g.GSM mobile
phones) use encryption for data authentication by having
some conventional data encrypted and checked. Such a way
to build a MAC is known to be insecure in most situations;
for instance, the WEP protocol, designed to protect WiFi
connections, was a spectacular failure in that matter.
However, industrial implementers are often reluctant to
compute both encryption and MAC, because it basically
doubles the cost. This is especially true for low-power mobile
devices, which have limited computing and electrical power.

F. Hash Functions
A good hash function must have specific properties

such as collision resistance. Although other candidates have
been proposed, the most used nowadays derive from the
MD family. MD4 [12] is considered as broken, and its
successors MD5 [13], SHA-0 and SHA-1 are also technically
broken. Some functions in the SHA family [3] (SHA-256,
SHA-384 and SHA-512) are still considered secure, but the
new results on SHA-0 and SHA-1 raise some concerns about
the whole family.

Moreover, implementing both a block cipher and a hash
function in a limited low-power device (e.g. a smartcard)
can be troublesome, due to hard limitations on the ROM
size, or die surface. It is conceivable to use a key-agile
block cipher as a hash function by using the data as private
key, with some chaining and padding; however, this problem
has not been well studied, and has been the subject of
only limited standardization (see ISO/IEC 10118-2 [9].

HIGH–PERFORMANCE ALGORITHMS
Some applications need specialised algorithms with very

high constraints on performance. They can be split into
roughly two groups :

A. High-speed specialised network nodes
We consider here devices which have to handle huge

amounts of data; the cryptographic algorithms they use
must be able to process data with a very high bandwidth
and very low latency. High bandwidth is usually achieved
using pipelining, and this is possible so long as the
algorithm itself can be expressed as a circuit. This is true
for most, if not all, block ciphers, but the mode of
operation is also important because non-parallel modes
such as CBC defeat pipelining. Latency cannot be reduced
easily. Among block ciphers, those with little diffusion and
many rounds usually imply a high latency because the
critical path for each data bit must traverse many layers.
Modern block ciphers are quite good in that respect (but
there is always an application for which the existing method
is not “good enough”).



Yadav, Relan and Bhatia 43

B. Low-power devices
Low-power devices are applications where cryptography

must be applied by hardware which is very limited in either
or both of computational power and electrical resources.
Some extreme applications are RFID tags, which receive very
low power through electromagnetic induction, and have very
limited time to compute and send back an answer through
radio waves. Other examples include Bluetooth-enabled
devices which are often battery-powered and yet must
sustain radio communications with medium to high data
bandwidth.

Most of those applications have to ultimately rely on a
general purpose 8-bit or 16-bit processor, with limited room
for code and static data (in ROM) and very limited room for
mutable data (in RAM). Most modern cryptographic
algorithms are designed as a compromise between high
speed on workstations and “generically acceptable
performance” for low-power embedded devices. It so
happens that some applications require better than
“generically acceptable”; the industry needs some algorithms
which can be relied upon for security and which perform
well on limited platforms.

RANDOM NUMBER GENERATORS
Random number generation is difficult, especially for

cryptographic purposes, because the “quality” of the
produced random data cannot be measured. Usual statistical
tests provide only a very superficial view of the problem;
cryptographic protocols require computational
unpredictability. A random number generator which does
not pas successfully the statistical tests is bad indeed;
but a generator which does, cannot be thus declared
“good”.

A cryptographic random number generator is usually
the combination of some seed, which is a random value
provided externally, and a pseudo-random number generator
(PRNG) which expands that seed into an arbitrarily long
stream of bits which are computationally indistinguishable
from random bits. The two main problems are:

(i) how to make a good seed;
(ii) how to define and implement a good PRNG.

A. Random Seeds
A seed is expressed as a value in a format which is

suitable for the purpose of the PRNG which will be used; it
usually is a stream of bits of some specified length (160
bits is common practice). The seed must have an entropy
which is good enough to thwart exhaustive search; actually,
entropy can be defined as the average cost for an exhaustive
search to succeed.

Entropy estimation and concentrations are the two main
parts of the problem of producing seeds. Entropy estimation
is about measuring how much “unpredictability” can be
attached to the result of measuring a physical event. For
instance, a coin flip yields one bit of entropy– if we assume
that the coin is not biased in any way. Entropy sources
commonly used vary, depending on the context :

(i) In embedded devices such as smartcards, a
specialized hardware random number generator is
mandatory; usual generators use a reverse-biased
PN junction, implemented with Zener diodes or a
smart combination of transistors.

(ii) In workstations the physical events are usually
precise timings of external interruptions, wich
correspond to network activity, key strokes, etc.
Some processors include a hardware random number
generator which uses a technology equivalent to
those used in smarcards.

(iii) There are some environment where almost no source
of randomness is supplied, for instance virtual
machines used to run applets. Those machines are
meant to not have any randomness. There exists a
seed gathering procedure which has been published
for the Java Virtual Machine; the idea is to measure
the efficiency of the thread schedular, because that
efficiency should depend on the actual load of the
host multitasking machine.

To sum up, the industry has the following needs with
regards to seed generation for cryptographic purposes :

(i) recipes for gathering random data in various
situations;

(ii) accurate estimators for the entropy thus obtained;
(iii) secure ways to concentrate random data, using either

a hash function, a block cipher or a stream cipher.

B. Pseudo-Random Number Generator (PRNG)
The main difference is that a PRNG has no concept of

input bandwidth, just output bandwidth. An encryption
system which just encrypts an endless stream of zeroes is
supposed to be a good PRNG; similarly, a PRNG can be
transformed into a reasonable stream cipher by using the
seed as a key, and combining the output bits with the data
using a bitwise exclusive-or. Parallelism is still important : it
can be exploited by hardware implementations to provide
better output bandwidth; but the same effect can be achieved
by including several instances of the generator, working on
several seeds which have been derived from a master seed
using another PRNG.

Another detail which makes PRNG performance easier
than encryption performance is that a PRNG works only for
producing random bytes, whereas an encryption system
definition must be wary of the feasibility and performance
of the corresponding decryption system.

What the industry needs here is a list of research-
approved ways to build a PRNG using a primitive
cryptographic operation, where that operation may be either
a hash function, a block cipher or a stream cipher.

IMPLEMENTATION ISSUES
A. Side-Channel Attacks

The implementation of cryptographic algorithms is a
complex matter, because it deals with security and this is
not easily measured. An implementation which passes all



44 Yadav, Relan and Bhatia

test vectors may still have security issues related to, for
instance, side-channel attacks. Such attacks exploit some
data leakage due to an implementation detail; the usual leak
mediums are timing (algorithm computation time is not
independent of the processed data and secret key) and
power consumption (especially for smartcards or other
devices which have an external power supply). Defending
against such leaks is not easy, especially with power
consumption for smartcards, because power is provided
externally, by a potentially hostile entity. Devising generic
ways to implement primitive operations in ways which do
not leak private data are an active research area, and much
work still needs to be done.

B. Testing : The implementation of symmetric algorithm can
be very difficult to test

However, some algorithms use Operations which can
be incorrectly implemented in subtle ways.

One such example is the DFC block cipher [7]. That
algorithm includes a modular affine transform; the reduction
is performed module 264 + 13. It is relatively difficult to
implement that reduction in a way which is both correct for
every input and also efficient. It is actually easy to implement
it in a way which is correct for most inputs but incorrect
with a probability of 2– 64 for random input data. Random
test vectors have a very low probability of catching such
an error; specific test vectors must be devised, so as to
exercise, the specific input values which may be handled
improperly.

Many algorithms use hard-coded look-up tables, where
the tables have been chosen for specific properties. A typing
error could corrupt one table entry and remain undetected
by the test vectors if none of them uses that table with the
corresponding entry.

In brief, for an algorithm specification to be properly
usable by the industry, appropriate validation procedures
(test vectors, mostly) should be included. These procedures
must be defined so as to be very likely to catch the most
common implementation errors.

CONCLUSION AND FUTURE TRENDS
We can conclude the most common industrial needs in

symmetric cryptography as follows :
(i) precise standards actively maintained and supported

by large, and if possible public sector organisations;
(ii) new enhanced modes of operations, both for

encryption and combined modes which provide both
encryption and authentication;

(iii) precise guidelines on the handling of related data
such as IVs;

(iv) specialised algorithms for use in contexts were usual
algorithms do not provide adequate performance,
especially low-power embedded devices;

(v) analysed hardware random number generators with
accurate entropy estimators;

(vi) high-performance secure PRNGs based on various
algorithms such as block ciphers, hash functions and
stream ciphers.

(vii) guidelines for methods which reduce secret data
leakage through side channels;

(viii) proper validation procedures for all standard
algorithms;

(ix) migration strategies.
Particularly there is a strong need for high-level

constructions (hashing, PRNG, MAC, etc) which use a block
cipher as the unique underlying cryptographic operation.
This is for small, lightweight applications which cannot
afford the concurrent implementation of a block cipher and
a hash function.

REFERENCES
[1] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of

operation. In Fast Software Encryption – FSE (2004), Volume
3017 of L.N.C.S., pages 389-407, Springer-Verlag, (2004).

[2] D. Bleichenbacher, Chosen Ciphertext Attacks Against
Protocols Based on the RSA Encryption Standard PKCS#1.
In Advances in Cryptology – CRYPTO ’98, volume 1462 of
L N C S, page 1-12, Springer-Verlag, (1998).

[3] FIPS 180-2, Secure hash Standard, Federal Information
Processing Standards Publication 180-2, U.S. Department of
Commerce / N.I.S.T(2002).

[4] EIPS 197, Advanced Encryption Standard, Federal
Information Processing Standards Publication 197, U.S.
Department of Commerce / N.I.S.T(2001).

[5] FIPS 46-3, Data Encryption Standard, Federal Information
Processing standards Publication 46-3, U.S. Department of
Commerce / National Bureau of Standards(1999).

[6] FIPS 81, DES Modes of Operation, Federal Information
Processing Standards Publication 81, U.S. Department of
Commerce / National Bureau of Standards(1980).

[7] H. Gilbert, M. Girault, P. Hoogvorst, F. Noilhan, T. Pornin,
G. Poupard, J. Stern, and S. Vaudenay, Decorrelated Fast
Cipher : an AES candidate, (1998).

[8] The Internet Society (ISOC), RFC-Editor.
[9] ISO / IEC 10118-2, Information technology-Security

techniques - Hash-functions-Part 2 : Hash-functions, using
an n-bit block cipher algorithm. International Organization
for Standardization, (2000).

[10] T. Kohno, J. Viega, and D. Whiting, CWC : A High-
Performance Conventional authenticated Encryption Mode.
In Fast Software Encryption – FSE (2004), Volume 3017
of L N C S, pages 408-426, Springer-Verlag, (2004).

[11] National Institute of Standards and Technology (NIST),
Federal Information Processing Standards (FIPS).

[12] RFC 1320, The MD4 Message Digest Algorithm, Internet
Request for Comments 1320, R.L. Rivest(1992).

[13] RFC 1321, The MD5 Message Digest Algorithm, Internet
Request for Comments 1321, R.L. Rivest(1992).

[14] RFC 2104, HMAC; Keyed-Hashing for Message
Authentication, Internet Request for Comments 2104, H.
Krawczyk and M. Bellare and R. Canetti(1997).

[15] RFC 2246, The TLS Protocol, Internet Request for
Comments 2246, T. Dierks and C. Allen(1999).

[16] RFC 3610, Counter with CBC-MAC (CCM), Internet Request
for Comments 3610, D. Whiting, R. Housley and N.
Ferguson(2003).

[17] P. Rogaway, M. Bellare, and J. Black, OCB; A Block-
Cipher Mode of Operation for Efficient Authenticated
Encryption, ACM Trans, Information System and Security,
6(3): 365-403(2003).


